Chuyên đề bồi dưỡng học sinh giỏi toán lớp 6 phần số học - Tài liệu bồi dưỡng học sinh giỏi toán lớp 6

Sử dụng: Miễn phí
Dung lượng: 632,4 KB
Lượt tải: 1,488
Nhà phát hành: Sưu tầm


Taifull.net giới thiệu: Chuyên đề bồi dưỡng học sinh giỏi toán lớp 6 phần số học: Chuyền đề bồi dưỡng học sinh giỏi toán lớp 6 phần số học đã hệ thống lại kiến thức về phần số học trong nhà trường như: số tận cùng, số chính phương, ước chung lớn nhất... và các dạng bài tập, cách giải liên quan đến các vấn đề trên. Các bạn có thể tải về tham khảo để ôn tập tốt hơn, chuẩn bị cho kì thi học sinh giỏi lớp 6.

Nội dung chi tiết:

Chuyền đề bồi dưỡng học sinh giỏi toán lớp 6 phần số học với nội dung bám sát chương trình học theo yêu cầu và quy định của Bộ GD&ĐT. Download.com.vn hi vọng tài liệu này sẽ giúp các bạn tham khảo, củng cố lại kiến thức môn Toán lớp 6 phần số học và các dạng bài tập của môn Toán lớp 6. Chúc các bạn ôn tập tốt và đạt kết quả cao trong kỳ thi học sinh giỏi.

30 đề thi học sinh giỏi môn Toán lớp 6

55 bài tập Toán lớp 6 – Ôn tập phần Số học

Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán

Chuyền đề bồi dưỡng học sinh giỏi toán lớp 6 phần số học

CHUYÊN ĐỀ BỒI DƯỠNG HSG LỚP 6 PHẦN SỐ HỌC

BÀI 1: TÌM CHỮ SỐ TẬN CÙNG

Tìm chữ số tận cùng của một số tự nhiên là dạng toán hay. Đa số các tài liệu về dạng toán này đều sử dụng khái niệm đồng dư, một khái niệm trừu tượng và không có trong chương trình. Vì thế có không ít học sinh, đặc biệt là các bạn lớp 6 và lớp 7 khó có thể hiểu và tiếp thu được.

Qua bài viết này, tôi xin trình bày với các bạn một số tính chất và phương pháp giải bài toán “tìm chữ số tận cùng”, chỉ sử dụng kiến thức THCS.

Chúng ta xuất phát từ tính chất sau:

Tính chất 1:

a) Các số có chữ số tận cùng là 0, 1, 5, 6 khi nâng lên lũy thừa bậc bất kì thì chữ số tận cùng vẫn không thay đổi.

b) Các số có chữ số tận cùng là 4, 9 khi nâng lên lũy thừa bậc lẻ thì chữ số tận cùng vẫn không thay đổi.

c) Các số có chữ số tận cùng là 3, 7, 9 khi nâng lên lũy thừa bậc 4n (n thuộc N) thì chữ số tận cùng là 1.

d) Các số có chữ số tận cùng là 2, 4, 8 khi nâng lên lũy thừa bậc 4n (n thuộc N) thì chữ số tận cùng là 6.

Việc chứng minh tính chất trên không khó, xin dành cho bạn đọc. Như vậy, muốn tìm chữ số tận cùng của số tự nhiên x = am, trước hết ta xác định chữ số tận cùng của a.

Nếu chữ số tận cùng của a là 0, 1, 5, 6 thì x cũng có chữ số tận cùng là 0, 1, 5, 6.

Nếu chữ số tận cùng của a là 3, 7, 9, vì am = a4n + r = a4n.ar với r = 0, 1, 2, 3 nên từ tính chất 1c => chữ số tận cùng của x chính là chữ số tận cùng của ar.

Nếu chữ số tận cùng của a là 2, 4, 8, cũng như trường hợp trên, từ tính chất 1d => chữ số tận cùng của x chính là chữ số tận cùng của 6.ar.

Bài toán 1: Tìm chữ số tận cùng của các số:
       a) 799          b) 141414          c) 4567

Lời giải:
a) Trước hết, ta tìm số dư của phép chia 99 cho 4 :
99 - 1 = (9 - 1)(98 + 97 + … + 9 + 1) chia hết cho 4
=> 99 = 4k + 1 (k thuộc N) => 799 = 74k + 1 = 74k.7
Do 74k có chữ số tận cùng là 1 (theo tính chất 1c) => 799 có chữ số tận cùng là 7.
b) Dễ thấy 1414 = 4k (k thuộc N) => theo tính chất 1d thì 141414 = 144k có chữ số tận cùng là 6.
c) Ta có 567 - 1 chia hết cho 4 => 567 = 4k + 1 (k thuộc N)
=> 4567 = 44k + 1 = 44k.4, theo tính chất 1d, 44k có chữ số tận cùng là 6 nên 4567 có chữ số tận cùng là 4.

Tính chất 2: Một số tự nhiên bất kì, khi nâng lên lũy thừa bậc 4n + 1 (n thuộc N) thì chữ số tận cùng vẫn không thay đổi.
Chữ số tận cùng của một tổng các lũy thừa được xác định bằng cách tính tổng các chữ số tận cùng của từng lũy thừa trong tổng.

Bài toán 2: Tìm chữ số tận cùng của tổng S = 21 + 35 + 49 + ... + 20048009.

Lời giải:

Nhận xét: Mọi lũy thừa trong S đều có số mũ khi chia cho 4 thì dư 1 (các lũy thừa đều có dạng n4(n - 2) + 1, n thuộc {2, 3, ..., 2004}).

Theo tính chất 2, mọi lũy thừa trong S và các cơ số tương ứng đều có chữ số tận cùng giống nhau, bằng chữ số tận cùng của tổng:

(2 + 3 + ... + 9) + 199.(1 + 2 + ... + 9) + 1 + 2 + 3 + 4 = 200(1 + 2 + ... + 9) + 9 = 9009.

Vậy chữ số tận cùng của tổng S là 9.

Từ tính chất 1 tiếp tục => tính chất 3.

Tính chất 3:

a) Số có chữ số tận cùng là 3 khi nâng lên lũy thừa bậc 4n + 3 sẽ có chữ số tận cùng là 7 ; số có chữ số tận cùng là 7 khi nâng lên lũy thừa bậc 4n + 3 sẽ có chữ số tận cùng là 3.

b) Số có chữ số tận cùng là 2 khi nâng lên lũy thừa bậc 4n + 3 sẽ có chữ số tận cùng là 8 ; số có chữ số tận cùng là 8 khi nâng lên lũy thừa bậc 4n + 3 sẽ có chữ số tận cùng là 2.

c) Các số có chữ số tận cùng là 0, 1, 4, 5, 6, 9, khi nâng lên lũy thừa bậc 4n + 3 sẽ không thay đổi chữ số tận cùng.

Bài toán 3: Tìm chữ số tận cùng của tổng T = 23 + 37 + 411 + ... + 20048011.

Lời giải:

Nhận xét: Mọi lũy thừa trong T đều có số mũ khi chia cho 4 thì dư 3 (các lũy thừa đều có dạng n4(n - 2) + 3, n thuộc {2, 3, ..., 2004}).

Theo tính chất 3 thì 23 có chữ số tận cùng là 8; 37 có chữ số tận cùng là 7; 411 có chữ số tận cùng là 4; ...

Như vậy, tổng T có chữ số tận cùng bằng chữ số tận cùng của tổng: (8 + 7 + 4 + 5 + 6 + 3 + 2 + 9) + 199.(1 + 8 + 7 + 4 + 5 + 6 + 3 + 2 + 9) + 1 + 8 + 7 + 4 = 200(1 + 8 + 7 + 4 + 5 + 6 + 3 + 2 + 9) + 8 + 7 + 4 = 9019.

Vậy chữ số tận cùng của tổng T là 9.

* Trong một số bài toán khác, việc tìm chữ số tận cùng dẫn đến lời giải khá độc đáo.

Bài toán 4: Tồn tại hay không số tự nhiên n sao cho n2 + n + 1 chia hết cho 19952000.

Lời giải: 19952000 tận cùng bởi chữ số 5 nên chia hết cho 5. Vì vậy, ta đặt vấn đề là liệu n2 + n + 1 có chia hết cho 5 không ?

Ta có n2 + n = n(n + 1), là tích của hai số tự nhiên liên tiếp nên chữ số tận cùng của n2 + n chỉ có thể là 0 ; 2 ; 6 => n2 + n + 1 chỉ có thể tận cùng là 1 ; 3 ; 7 => n2 + n + 1 không chia hết cho 5.

Vậy không tồn tại số tự nhiên n sao cho n2 + n + 1 chia hết cho 19952000.

Sử dụng tính chất “một số chính phương chỉ có thể tận cùng bởi các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9”, ta có thể giải được bài toán sau:

Bài toán 5: Chứng minh rằng các tổng sau không thể là số chính phương:

  1. a) M = 19k + 5k + 1995k + 1996k (với k chẵn)
  2. b) N = 20042004k + 2003

Sử dụng tính chất “một số nguyên tố lớn hơn 5 chỉ có thể tận cùng bởi các chữ số 1 ; 3 ; 7 ; 9”, ta tiếp tục giải quyết được bài toán:

Bài toán 6: Cho p là số nguyên tố lớn hơn 5. Chứng minh rằng: p8n +3.p4n - 4 chia hết cho 5.

Tài liệu vẫn còn, mời các bạn tải về để xem tiếp

download.com.vn