Đề thi tuyển sinh lớp 10 tỉnh Long An năm học 2012 - 2013 môn Toán (Hệ chuyên - Đề 1) - Sở GD&ĐT Long An

Sử dụng: Miễn phí
Dung lượng: 49 KB
Lượt tải: 368
Nhà phát hành: Sở GD-ĐT Long An


Bạn có biết Đề thi tuyển sinh lớp 10 tỉnh Long An năm học 2012 - 2013 môn Toán (Hệ chuyên - Đề 1) không?! Đề thi tuyển sinh lớp 10 tỉnh Long An năm học 2012 - 2013 môn Toán (Hệ chuyên - Đề 1)

Giới thiệu

Đề thi tuyển sinh lớp 10 tỉnh Long An năm học 2012 - 2013 môn Toán (Hệ chuyên - Đề 1) - Sở GD&ĐT Long An

SỞ GIÁO DỤC VÀ ĐÀO TẠO 
LONG AN

(Đề thi chính thức)

KỲ THI TUYỂN SINH VÀO LỚP 10 HỆ CHUYÊN
NĂM HỌC 2O12 – 2013
Môn thi: TOÁN (Hệ chuyên)

(Thời gian làm bài 150 phút không kể thời gian giao đề)
Ngày thi: 05/07/2012

Câu 1: (1,5điểm)

Cho biểu thức: Đề thi tuyển sinh lớp 10 chuyên toán

a) Rút gọn biểu thức A.

b) Tìm giá trị lớn nhất của biểu thức A.

Câu 2: (2 điểm)

Cho phương trình x2 - 2(m - 1)x + 2m - 3 = 0 (x là ẩn, m là tham số).

Tìm giá trị của m để phương trình có hai nghiệm x1, x2 sao cho: 

Câu 3: (1 điểm)

Giải phương trình: 

Câu 4: (2,5 điểm) 

Cho hai điểm B,C cố định trên đường tròn (O), (đường thẳng BC không đi qua tâm O). Từ B,C kẻ hai tiếp tuyến với đường tròn cắt nhau tại D, từ D kẻ cát tuyến d cắt đường tròn tại hai điểm E và F (d không đi qua tâm O và không  trùng với DB, DC; E nằm giữa D và F). Từ B kẻ đường thẳng song song với d cắt đường tròn tại điểm M ( M khác B), MC cắt d tại I. 

a) Chứng minnh góc BMC = DOC

b) Chứng minh bốn điểm D, C, I ,O nằm trên một đường tròn và I là trung điểm của EF.

c)  Tìm quỹ tích điểm I khi d di động. 

Câu 5: (1 điểm)

Chứng minh rằng với mọi n thuộc N thì  chia hết cho 11.

Câu 6: (1 điểm)

Cho x, y, z là độ dài ba cạnh của một tam giác có chu vi là 2. Hãy so sánh x, y, z với 1 và chứng minh rằng:
x2 + y2 + z2 + 2xyz < 2.

Câu 7: (1điểm)

Cho tam giác ABC có ba đường cao AD, BE, CF (D thuộc BC, E thuộc AC, F thuộc AB) và đường tròn (O; r) nội tiếp tam giác ABC. 
Chứng minh Đề thi tuyển sinh lớp 10 chuyên toán

Download tài liệu để xem thêm chi tiết.

download.com.vn